Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin.
نویسندگان
چکیده
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1, encoding polycystin-1 (PC1), or PKD2 (polycystin-2, PC2). Autosomal recessive PKD (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). No molecular link between ADPKD and ARPKD has been determined. Here, we demonstrated, by yeast two-hybrid and biochemical assays, that KIF3B, a motor subunit of kinesin-2, associates with PC2 and FPC. Co-immunoprecipitation experiments using Madin-Darby canine kidney (MDCK) and inner medullary collecting duct (IMCD) cells and human kidney revealed that PC2 and KIF3B, FPC and KIF3B and, furthermore, PC2 and FPC are endogenously in the same complex(es), though no direct association between the PC2 and FPC intracellular termini was detected. In vitro binding and Far Western blot experiments demonstrated that PC2 and FPC are in the same complex only if KIF3B is present, presumably by forming a PC2-KIF3B-FPC complex. This was supported by our observation that altering KIF3B level in IMCD cells by over-expression or siRNA significantly affected complexing between PC2 and FPC. Immunofluorescence experiments showed that PC2, FPC and KIF3B partially co-localized in primary cilia of over-confluent and perinuclear regions of sub-confluent cells. Furthermore, KIF3B mediated functional modulation of purified PC2 channels by FPC in a planer lipid bilayer electrophysiology system. The FPC C-terminus substantially stimulated PC2 channel activity in the presence of KIF3B, whereas FPC or KIF3B alone had no effect. Taken together, we discovered that kinesin-2 is a linker between PC2 and FPC and mediates the regulation of PC2 channel function by FPC. Our study may be important for elucidating common molecular pathways for PKD of different genotypes.
منابع مشابه
Characterization of PKD protein-positive exosome-like vesicles.
Proteins associated with autosomal dominant and autosomal recessive polycystic kidney disease (polycystin-1, polycystin-2, and fibrocystin) localize to various subcellular compartments, but their functional site is thought to be on primary cilia. PC1+ vesicles surround cilia in Pkhd1(del2/del2) mice, which led us to analyze these structures in detail. We subfractionated urinary exosome-like ves...
متن کاملBLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia
Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our ...
متن کاملNew Insights into the Molecular Mechanisms Targeting Tubular Channels/Transporters in PKD Development.
BACKGROUND Autosomal dominant polycystic kidney disease (PKD) or autosomal recessive PKD is caused by a mutation in the PKD1, PKD2 or PKHD1 gene, which encodes polycystin-1, polycystin-2 or fibrocystin, respectively. Embryonic and postnatal mutation studies show that transport or channel function is dysregulated before the initiation of cystogenesis, suggesting that the abnormality of transport...
متن کاملFibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function.
Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway. For investigation of this, ...
متن کاملFibrocystin/polyductin, found in the same protein complex with polycystin-2, regulates calcium responses in kidney epithelia.
Recent evidence suggests that fibrocystin/polyductin (FPC), polycystin-1 (PC1), and polycystin-2 (PC2) are all localized at the plasma membrane and the primary cilium, where PC1 and PC2 contribute to fluid flow sensation and may function in the same mechanotransduction pathways. To further define the exact subcellular localization of FPC, the protein product encoded by the PKHD1 gene responsibl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 15 22 شماره
صفحات -
تاریخ انتشار 2006